Sciweavers

FLAIRS
2008

Incorporating Latent Semantic Indexing into Spectral Graph Transducer for Text Classification

14 years 1 months ago
Incorporating Latent Semantic Indexing into Spectral Graph Transducer for Text Classification
Spectral Graph Transducer(SGT) is one of the superior graph-based transductive learning methods for classification. As for the Spectral Graph Transducer algorithm, a good graph representation for data to be processed is very important. In this paper, we try to incorporate Latent Semantic Indexing(LSI) into SGT for text classification. Firstly, we exploit LSI to represent documents as vectors in a latent semantic space since we propose that the documents and their semantic relationships can be reflected more pertinently in this latent semantic space. Then, a graph needed by SGT is constructed. In the graph, a node corresponds to a vector from LSI. Finally, we apply the graph to Spectral Graph Transducer for text classification. The experiments gave us excellent results on both English and Chinese text classification datasets and demonstrated the validation of our assumption.
Xinyu Dai, Baoming Tian, Junsheng Zhou, Jiajun Che
Added 02 Oct 2010
Updated 02 Oct 2010
Type Conference
Year 2008
Where FLAIRS
Authors Xinyu Dai, Baoming Tian, Junsheng Zhou, Jiajun Chen
Comments (0)