Sciweavers

NIPS
2004

Incremental Algorithms for Hierarchical Classification

14 years 2 months ago
Incremental Algorithms for Hierarchical Classification
We study the problem of hierarchical classification when labels corresponding to partial and/or multiple paths in the underlying taxonomy are allowed. We introduce a new hierarchical loss function, the H-loss, implementing the simple intuition that additional mistakes in the subtree of a mistaken class should not be charged for. Based on a probabilistic data model introduced in earlier work, we derive the Bayes-optimal classifier for the H-loss. We then empirically compare two incremental approximations of the Bayes-optimal classifier with a flat SVM classifier and with classifiers obtained by using hierarchical versions of the Perceptron and SVM algorithms. The experiments show that our simplest incremental approximation of the Bayes-optimal classifier performs, after just one training epoch, nearly as well as the hierarchical SVM classifier (which performs best). For the same incremental algorithm we also derive an H-loss bound showing, when data are generated by our probabilistic d...
Nicolò Cesa-Bianchi, Claudio Gentile, Andre
Added 31 Oct 2010
Updated 31 Oct 2010
Type Conference
Year 2004
Where NIPS
Authors Nicolò Cesa-Bianchi, Claudio Gentile, Andrea Tironi, Luca Zaniboni
Comments (0)