A novel (differential) entropy estimator is introduced where the maximum entropy bound is used to approximate the entropy given the observations, and is computed using a numerical procedure thus resulting in accurate estimates for the entropy. We show that such an estimator exists for a wide class of measuring functions, and provide a number of design examples to demonstrate its flexible nature. We then derive a novel independent component analysis (ICA) algorithm that uses the entropy estimate thus obtained, ICA by entropy bound minimization (ICA-EBM). The algorithm adopts a line search procedure, and initially uses updates that constrain the demixing matrix to be orthogonal for robust performance. We demonstrate the superior performance of ICA-EBM and its ability to match sources that come from a wide range of distributions using simulated and real-world data.