Sciweavers

SCIA
2007
Springer

Individual Discriminative Face Recognition Models Based on Subsets of Features

14 years 6 months ago
Individual Discriminative Face Recognition Models Based on Subsets of Features
Abstract. The accuracy of data classification methods depends considerably on the data representation and on the selected features. In this work, the elastic net model selection is used to identify meaningful and important features in face recognition. Modelling the characteristics which distinguish one person from another using only subsets of features will both decrease the computational cost and increase the generalization capacity of the face recognition algorithm. Moreover, identifying which are the features that better discriminate between persons will also provide a deeper understanding of the face recognition problem. The elastic net model is able to select a subset of features with low computational effort compared to other state-of-the-art feature selection methods. Furthermore, the fact that the number of features usually is larger than the number of images in the data base makes feature selection techniques such as forward selection or lasso regression become inadequate. ...
Line Harder Clemmensen, David Delgado Gomez, Bjarn
Added 09 Jun 2010
Updated 09 Jun 2010
Type Conference
Year 2007
Where SCIA
Authors Line Harder Clemmensen, David Delgado Gomez, Bjarne K. Ersbøll
Comments (0)