There usually exist many kinds of variations in face images taken under uncontrolled conditions, such as changes of pose, illumination, expression, etc. Most previous works on face recognition focus on particular variations and usually assume the absence of others. Instead of such a `divide and conquer' strategy, this paper attempts to directly address face recognition under uncontrolled conditions. The key is the Individual Stable Space (ISS) which only expresses personal characteristics. A neural network named ISNN is proposed to map a raw face image into the ISS. After that, three ISS-based algorithms are designed for face recognition under uncontrolled conditions. There are no restrictions for the images fed into these algorithms. Moreover, unlike many other face recognition techniques, they do not require any extra training information, such as the view angle. These advantages make them practical to implement under uncontrolled conditions. The proposed algorithms are tested ...