Sciweavers

ACCV
2006
Springer

Inducing Semantic Segmentation from an Example

14 years 5 months ago
Inducing Semantic Segmentation from an Example
Segmenting an image into semantically meaningful parts is a fundamental and challenging task in computer vision. Automatic methods are able to segment an image into coherent regions, but such regions generally do not correspond to complete meaningful parts. In this paper, we show that even a single training example can greatly facilitate the induction of a semantically meaningful segmentation on novel images within the same domain: images depicting the same, or similar, objects in a similar setting. Our approach constructs a non-parametric representation of the example segmentation by selecting patch-based representatives. This allows us to represent complex semantic regions containing a large variety of colors and textures. Given an input image, we first partition it into small homogeneous fragments, and the possible labelings of each fragment are assessed using a robust voting procedure. Graph-cuts optimization is then used to label each fragment in a globally optimal manner.
Yaar Schnitman, Yaron Caspi, Daniel Cohen-Or, Dani
Added 13 Jun 2010
Updated 13 Jun 2010
Type Conference
Year 2006
Where ACCV
Authors Yaar Schnitman, Yaron Caspi, Daniel Cohen-Or, Dani Lischinski
Comments (0)