In this paper, we introduce two new formulations for multi-class multi-kernel relevance vector machines (mRVMs) that explicitly lead to sparse solutions, both in samples and in number of kernels. This enables their application to large-scale multi-feature multinomial classification problems where there is an abundance of training samples, classes and feature spaces. The proposed methods are based on an expectation-maximization (EM) framework employing a multinomial probit likelihood and explicit pruning of non-relevant training samples. We demonstrate the methods on a low-dimensional artificial dataset. We then demonstrate the accuracy and sparsity of the method when applied to the challenging bioinformatics task of predicting protein subcellular localization.
Theodoros Damoulas, Yiming Ying, Mark A. Girolami,