Abstract—This paper considers the cooperation between primary and secondary users at information and energy levels when both users are energy harvesting nodes. In particular, a secondary transmitter helps relaying the primary message, and in turn, gains the spectrum access as a reward. Also, the primary transmitter supplies energy to the secondary transmitter if the latter is energy-constrained, which facilitates an uninterrupted cooperation. We address this two-level cooperation over a finite horizon with the finite battery constraint at the secondary transmitter. While promising the rate-guaranteed service to both primary and secondary users, we aim to maximize the primary rate. We develop an iterative algorithm that obtains the optimal offline power policies for primary and secondary users. To acquire insights about the structure of the optimal solution, we examine specific scenarios. Furthermore, we investigate the effects of the secondary rate constraint and finite battery ...
Jeya Pradha J., Sanket S. Kalamkar, Adrish Banerje