We present a novel ontology integration technique that explicitly takes the dynamics and data-intensiveness of e-health and biomedicine application domains into account. Changing and growing knowledge, possibly contained in unstructured natural language resources, is handled by application of cutting-edge Semantic Web technologies. In particular, semi-automatic integration of ontology learning results into a manually developed ontology is employed. This integration bases on automatic negotiation of agreed alignments, inconsistency resolution and natural language generation methods. Their novel combination alleviates the end-user effort in the incorporation of new knowledge to large extent. This allows for efficient application in many practical use cases, as we show in the paper. Key words: dynamic ontology integration, ontology evolution, ontology alignment and negotiation, ontology learning, biomedical ontologies, knowledge acquisition, lifecycle