Sciweavers

ICASSP
2011
IEEE

Integrating articulatory features using Kullback-Leibler divergence based acoustic model for phoneme recognition

13 years 4 months ago
Integrating articulatory features using Kullback-Leibler divergence based acoustic model for phoneme recognition
In this paper, we propose a novel framework to integrate articulatory features (AFs) into HMM- based ASR system. This is achieved by using posterior probabilities of different AFs (estimated by multilayer perceptrons) directly as observation features in Kullback-Leibler divergence based HMM (KL-HMM) system. On the TIMIT phoneme recognition task, the proposed framework yields a phoneme recognition accuracy of 72.4% which is comparable to KL-HMM system using posterior probabilities of phonemes as features (72.7%). Furthermore, a best performance of 73.5% phoneme recognition accuracy is achieved by jointly modeling AF probabilities and phoneme probabilities as features. This shows the efficacy and flexibility of the proposed approach.
Ramya Rasipuram, Magimai.-Doss Mathew
Added 21 Aug 2011
Updated 21 Aug 2011
Type Journal
Year 2011
Where ICASSP
Authors Ramya Rasipuram, Magimai.-Doss Mathew
Comments (0)