Abstract. One of the effects of the general Internet growth is an immense number of user accesses to WWW resources. These accesses are recorded in the web server log files, which are a rich data resource for finding useful patterns and rules of user browsing behavior, and they caused the rise of technologies for Web usage mining. Current Web usage mining applications rely exclusively on the web server log files. The main hypothesis discussed in this paper is that Web content analysis can be used to improve Web usage mining results. We propose a system that integrates Web page clustering into log file association mining and uses the cluster labels as Web page content indicators. It is demonstrated that novel and interesting association rules can be mined from the combined data source. The rules can be used further in various applications, including Web user profiling and Web site construction. We experiment with several approaches to content clustering, relying on keyword and char...