We study efficient interference-aware joint routing and TDMA link scheduling for a multihop wireless network to maximize its throughput. Efficient link scheduling can greatly reduce the interference effect of close-by transmissions. Unlike the previous studies that often assume a unit disk graph model, we assume that different terminals could have different transmission ranges and different interference ranges. In our model, it is also possible that a communication link may not exist due to barriers or is not used by a predetermined routing protocol, while the transmission of a node always result interference to all non-intended receivers within its interference range. Using a mathematical formulation, we develop interference aware joint routing and synchronized TDMA link schedulings that optimize the networking throughput subject to various constraints. Our linear programming formulation will find a flow routing whose achieved throughput is at least a constant fraction of the optimum,...