Abstract. Interplanetary trajectory optimization studies mostly considered a single objective of minimizing travel time between two planets or launch velocity of spacecraft at the departure planet or maximizing delivered payload at the destination planet. Despite a few studies, in this paper, we have considered a simultaneous minimization study of both launch velocity and time of travel between two specified planets with and without the use of gravitational advantage (swingby) of some intermediate planets. Using careful consideration of a Lambert’s approach with the Newton-Raphson based root finding procedure of developing a trajectory dictated by a set of variables (departure date, swing-by planets, etc.), a number of derived parameters, such as time of flight between arrival and destination planet, date of arrival, and launch velocity, are computed. A commonly-used evolutionary multi-objective optimization algorithm (NSGA-II) is then employed to find a set of trade-off solution...