Recent surge of interest towards congestion control that relies on single-link feedback (e.g., XCP, RCP, MaxNet, EMKC, VCP), suggests that such systems may offer certain benefits over traditional models of additive packet loss. Besides topology-independent stability and faster convergence to efficiency/fairness, it was recently shown that any stable singlelink system with a symmetric Jacobian tolerates arbitrary fixed, as well as time-varying, feedback delays. Although delayindependence is an appealing characteristic, the EMKC system developed in exhibits undesirable equilibrium properties and slow convergence behavior. To overcome these drawbacks, we propose a new method called JetMax and show that it admits a low-overhead implementation inside routers (three additions per packet), overshoot-free transient and steady state, tunable link utilization, and delay-insensitive flow dynamics. The proposed framework also provides capacity-independent convergence time, where fairness and ...