We study single machine scheduling problems, where processing times of the jobs are exponential functions of their start times. For increasing functions, we prove strong NP-hardness of the makespan minimization problem with arbitrary job release times. For decreasing functions, maximum lateness minimization problem is proved to be strongly NP-hard and total weighted completion time minimization problem is proved to be ordinary NP-hard. Heuristic algorithms are presented and computationally tested for these problems. Key words: scheduling, single machine, start time dependent processing times, computational complexity, heuristics.
Adam Janiak, Mikhail Y. Kovalyov