Abstract--We consider multiaccess multiple-input multipleoutput (MIMO) systems with finite rate feedback with the aim of understanding how to efficiently employ the given feedback resource to maximize the sum rate. A joint quantization and feedback strategy is proposed: the base station selects the strongest users, jointly quantizes their strongest eigen-channel vectors and broadcasts a common feedback to all the users. This joint strategy differs from an individual strategy in which quantization and feedback are performed independently across users, and it improves upon the individual strategy in the same way that vector quantization improves upon scalar quantization. To analyze the proposed strategy, the effect of user selection is described by extreme order statistics, while the effect of joint quantization is quantified through what we term "the composite Grassmann manifold". The achievable sum rate is then estimated using random matrix theory providing an analytic benchm...