Sciweavers

CORR
2016
Springer

Joint Object-Material Category Segmentation from Audio-Visual Cues

8 years 9 months ago
Joint Object-Material Category Segmentation from Audio-Visual Cues
It is not always possible to recognise objects and infer material properties for a scene from visual cues alone, since objects can look visually similar whilst being made of very different materials. In this paper, we therefore present an approach that augments the available dense visual cues with sparse auditory cues in order to estimate dense object and material labels. Since estimates of object class and material properties are mutuallyinformative, we optimise our multi-output labelling jointly using a random-field framework. We evaluate our system on a new dataset with paired visual and auditory data that we make publicly available. We demonstrate that this joint estimation of object and material labels significantly outperforms the estimation of either category in isolation.
Anurag Arnab, Michael Sapienza, Stuart Golodetz, J
Added 31 Mar 2016
Updated 31 Mar 2016
Type Journal
Year 2016
Where CORR
Authors Anurag Arnab, Michael Sapienza, Stuart Golodetz, Julien P. C. Valentin, Ondrej Miksik, Shahram Izadi, Philip H. S. Torr
Comments (0)