This paper introduces a Maximum Entropy dependency parser based on an efficient kbest Maximum Spanning Tree (MST) algorithm. Although recent work suggests that the edge-factored constraints of the MST algorithm significantly inhibit parsing accuracy, we show that generating the 50-best parses according to an edge-factored model has an oracle performance well above the 1-best performance of the best dependency parsers. This motivates our parsing approach, which is based on reranking the kbest parses generated by an edge-factored model. Oracle parse accuracy results are presented for the edge-factored model and 1-best results for the reranker on eight languages (seven from CoNLL-X and English).