In this paper, we give evidence for the problems Disjoint Cycles and Disjoint Paths that they cannot be preprocessed in polynomial time such that resulting instances always have a size bounded by a polynomial in a specified parameter (or, in short: do not have a polynomial kernel); these results are assuming the validity of certain complexity theoretic assumptions. We build upon recent results by Bodlaender et al. [3] and Fortnow and Santhanam [13], that show that NPcomplete problems that are or-compositional do not have polynomial kernels, unless NP ⊆ coNP/poly. To this machinery, we add a notion of transformation, and thus obtain that Disjoint Cycles and Disjoint Paths do not have polynomial kernels, unless NP ⊆ coNP/poly. We also show that the related Disjoint Cycles Packing problem has a kernel of size O(k log k).
Hans L. Bodlaender, Stéphan Thomassé