Sciweavers

ICPR
2008
IEEE

Kernel oriented discriminant analysis for speaker-independent phoneme spaces

15 years 1 months ago
Kernel oriented discriminant analysis for speaker-independent phoneme spaces
Speaker independent feature extraction is a critical problem in speech recognition. Oriented principal component analysis (OPCA) is a potential solution that can find a subspace robust against noise of the data set. The objective of this paper is to find a speaker-independent subspace by generalizing OPCA in two steps: First, we find a nonlinear subspace with the help of a kernel trick, which we refer to as kernel OPCA. Second, we generalize OPCA to problems with more than two phonemes, which leads to oriented discriminant analysis (ODA). In addition, we equip ODA with the kernel trick again, which we refer to as kernel ODA. The models are tested on the CMU ARCTIC speech database. Our results indicate that our proposed kernel methods can outperform linear OPCA and linear ODA at finding a speaker-independent phoneme space.
Heeyoul Choi, Ricardo Gutierrez-Osuna, Seungjin Ch
Added 05 Nov 2009
Updated 05 Nov 2009
Type Conference
Year 2008
Where ICPR
Authors Heeyoul Choi, Ricardo Gutierrez-Osuna, Seungjin Choi, Yoonsuck Choe
Comments (0)