Sciweavers

ICML
2006
IEEE

Kernel Predictive Linear Gaussian models for nonlinear stochastic dynamical systems

15 years 7 days ago
Kernel Predictive Linear Gaussian models for nonlinear stochastic dynamical systems
The recent Predictive Linear Gaussian model (or PLG) improves upon traditional linear dynamical system models by using a predictive representation of state, which makes consistent parameter estimation possible without any loss of modeling power and while using fewer parameters. In this paper we extend the PLG to model stochastic, nonlinear dynamical systems by using kernel methods. With a Gaussian kernel, the model admits closed form solutions to the state update equations due to conjugacy between the dynamics and the state representation. We also explore an efficient sigma-point approximation to the state updates, and show how all of the model parameters can be learned directly from data (and can be learned on-line with the Kernel Recursive Least-Squares algorithm). We empirically compare the model and its approximation to the original PLG and discuss their relative advantages.
David Wingate, Satinder P. Singh
Added 17 Nov 2009
Updated 17 Nov 2009
Type Conference
Year 2006
Where ICML
Authors David Wingate, Satinder P. Singh
Comments (0)