This paper investigates the effect of Kernel Principal Component Analysis (KPCA) within the classification framework, essentially the regularization properties of this dimensionality reduction method. KPCA has been previously used as a pre-processing step before applying an SVM but we point out that this method is somewhat redundant from a regularization point of view and we propose a new algorithm called Kernel Projection Machine to avoid this redundancy, based on an analogy with the statistical framework of regression for a Gaussian white noise model. Preliminary experimental results show that this algorithm reaches the same performances as an SVM.