Sciweavers

NIPS
2001

KLD-Sampling: Adaptive Particle Filters

14 years 1 months ago
KLD-Sampling: Adaptive Particle Filters
Over the last years, particle filters have been applied with great success to a variety of state estimation problems. We present a statistical approach to increasing the efficiency of particle filters by adapting the size of sample sets on-the-fly. The key idea of the KLD-sampling method is to bound the approximation error introduced by the sample-based representation of the particle filter. The name KLD-sampling is due to the fact that we measure the approximation error by the Kullback-Leibler distance. Our adaptation approach chooses a small number of samples if the density is focused on a small part of the state space, and it chooses a large number of samples if the state uncertainty is high. Both the implementation and computation overhead of this approach are small. Extensive experiments using mobile robot localization as a test application show that our approach yields drastic improvements over particle filters with fixed sample set sizes and over a previously introduced adaptat...
Dieter Fox
Added 31 Oct 2010
Updated 31 Oct 2010
Type Conference
Year 2001
Where NIPS
Authors Dieter Fox
Comments (0)