This paper introduces two new methods for label ranking based on a probabilistic model of ranking data, called the Plackett-Luce model. The idea of the first method is to use the PL model to fit locally constant probability models in the context of instance-based learning. As opposed to this, the second method estimates a global model in which the PL parameters are represented as functions of the instance. Comparing our methods with previous approaches to label ranking, we find that they offer a number of advantages. Experimentally, we moreover show that they are highly competitive to start-of-the-art methods in terms of predictive accuracy, especially in the case of training data with incomplete ranking information.