A particularly simple and mathematically elegant example of chaos in a threedimensional flow is examined in detail. It has the property of cyclic symmetry with respect to interchange of the three orthogonal axes, a single bifurcation parameter that governs the damping and the attractor dimension over most of the range 2 to 3 (as well as 0 and 1) and whose limiting value b = 0 gives Hamiltonian chaos, three-dimensional deterministic fractional Brownian motion, and an interesting symbolic dynamic.
Julien Clinton Sprott, Konstantinos E. Chlouveraki