A k-separated matching in a graph is a set of edges at distance at least k from one another (hence, for instance, a 1-separated matching is just a matching in the classical sense). We consider the problem of approximating the solution to the maximum k-separated matching problem in random r-regular graphs for each fixed integer k and each fixed r ≥ 3. We prove both constructive lower bounds and combinatorial upper bounds on the size of the optimal solutions.