We present an approximation scheme for optimizing certain Quadratic Integer Programming problems with positive semidefinite objective functions and global linear constraints. This framework includes well known graph problems such as Minimum graph bisection, Edge expansion, Uniform sparsest cut, and Small Set expansion, as well as the Unique Games problem. These problems are notorious for the existence of huge gaps between the known algorithmic results and NP-hardness results. Our algorithm is based on rounding semidefinite programs from the Lasserre hierarchy, and the analysis uses bounds for low-rank approximations of a matrix in Frobenius norm using columns of the matrix. For all the above graph problems, we give an algorithm running in time nO(r/ε2 ) with approximation ratio 1+ε min{1,λr} , where λr is the r’th smallest eigenvalue of the normalized graph Laplacian L. In the case of graph bisection and small set expansion, the number of vertices in the cut is within lower-or...