Sciweavers

CVPR
2008
IEEE

Learning 4D action feature models for arbitrary view action recognition

15 years 1 months ago
Learning 4D action feature models for arbitrary view action recognition
In this paper we present a novel approach using a 4D (x,y,z,t) action feature model (4D-AFM) for recognizing actions from arbitrary views. The 4D-AFM elegantly encodes shape and motion of actors observed from multiple views. The modeling process starts with reconstructing 3D visual hulls of actors at each time instant. Spatiotemporal action features are then computed in each view by analyzing the differential geometric properties of spatio-temporal volumes (3D STVs) generated by concatenating the actor's silhouette over the course of the action (x,y,t). These features are mapped to the sequence of 3D visual hulls over time (4D) to build the initial 4D-AFM. To generalize the model for action category recognition, the AFMs are further learned over a number of supplemental videos with unknown camera parameters. Actions are recognized based on the scores of matching action features from the input videos to the model points of 4D-AFMs by exploiting pairwise interactions of features. P...
Pingkun Yan, Saad M. Khan, Mubarak Shah
Added 12 Oct 2009
Updated 28 Oct 2009
Type Conference
Year 2008
Where CVPR
Authors Pingkun Yan, Saad M. Khan, Mubarak Shah
Comments (0)