Sciweavers

GOSLER
1995

Learning and Consistency

14 years 4 months ago
Learning and Consistency
In designing learning algorithms it seems quite reasonable to construct them in such a way that all data the algorithm already has obtained are correctly and completely reflected in the hypothesis the algorithm outputs on these data. However, this approach may totally fail. It may lead to the unsolvability of the learning problem, or it may exclude any efficient solution of it. Therefore we study several types of consistent learning in recursion-theoretic inductive inference. We show that these types are not of universal power. We give “lower bounds” on this power. We characterize these types by some versions of decidability of consistency with respect to suitable “non-standard” spaces of hypotheses. Then we investigate the problem of learning consistently in polynomial time. In particular, we present a natural learning problem and prove that it can be solved in polynomial time if and only if the algorithm is allowed to work inconsistently.
Rolf Wiehagen, Thomas Zeugmann
Added 26 Aug 2010
Updated 26 Aug 2010
Type Conference
Year 1995
Where GOSLER
Authors Rolf Wiehagen, Thomas Zeugmann
Comments (0)