Sciweavers

ICMI
2009
Springer

Learning and predicting multimodal daily life patterns from cell phones

14 years 7 months ago
Learning and predicting multimodal daily life patterns from cell phones
In this paper, we investigate the multimodal nature of cell phone data in terms of discovering recurrent and rich patterns in people’s lives. We present a method that can discover routines from multiple modalities (location and proximity) jointly modeled, and that uses these informative routines to predict unlabeled or missing data. Using a joint representation of location and proximity data over approximately 10 months of 97 individuals’ lives, Latent Dirichlet Allocation is applied for the unsupervised learning of topics describing people’s most common locations jointly with the most common types of interactions at these locations. We further successfully predict where and with how many other individuals users will be, for people with both highly and lowly varying lifestyles. Categories and Subject Descriptors: I.5.2 [Design Methodology]: Pattern analysis General Terms: Human Factors.
Katayoun Farrahi, Daniel Gatica-Perez
Added 26 May 2010
Updated 26 May 2010
Type Conference
Year 2009
Where ICMI
Authors Katayoun Farrahi, Daniel Gatica-Perez
Comments (0)