Abstract— This paper presents a learning-enhanced marketbased task allocation approach for oversubscribed domains. In oversubscribed domains all tasks cannot be completed within the required deadlines due to a lack of resources. We focus specifically on domains where tasks can be generated throughout the mission, tasks can have different levels of importance and urgency, and penalties are assessed for failed commitments. Therefore, agents must reason about potential future events before making task commitments. Within these constraints, existing market-based approaches to task allocation can handle task importance and urgency, but do a poor job of anticipating future tasks, and are hence assessed a high number of penalties. In this work, we enhance a baseline market-based task allocation approach using regression-based learning to reduce overall incurred penalties. We illustrate the effectiveness of our approach in a simulated disaster response scenario by comparing performance with...
Edward Gil Jones, M. Bernardine Dias, Anthony Sten