Sciweavers

EEE
2005
IEEE

Learning the Kernel Matrix for XML Document Clustering

14 years 5 months ago
Learning the Kernel Matrix for XML Document Clustering
The rapid growth of XML adoption has urged for the need of a proper representation for semi-structured documents, where the document structural information has to be taken into account so as to support more precise document analysis. In this paper, an XML document representation named “structured link vector model” is adopted, with a kernel matrix included for modeling the similarity between XML elements. Our formulation allows individual XML elements to have their own weighted contribution to the overall document similarity while at the same time allows the between-element similarity to be captured. An iterative algorithm is derived to learn the kernel matrix. For performance evaluation, the ACM SIGMOD Record dataset as well as the CEDB dataset have been tested. Our proposed method outperforms significantly the traditional vector space model and the edit-distance based methods. In addition, the kernel matrix obtained as a by-product provides knowledge about the conceptual relatio...
Jianwu Yang, William Kwok-Wai Cheung, Xiaoou Chen
Added 24 Jun 2010
Updated 24 Jun 2010
Type Conference
Year 2005
Where EEE
Authors Jianwu Yang, William Kwok-Wai Cheung, Xiaoou Chen
Comments (0)