Sciweavers

ICML
2003
IEEE

Learning with Knowledge from Multiple Experts

15 years 1 months ago
Learning with Knowledge from Multiple Experts
The use of domain knowledge in a learner can greatly improve the models it produces. However, high-quality expert knowledge is very difficult to obtain. Traditionally, researchers have assumed that knowledge comes from a single self-consistent source. A little-explored but often more feasible alternative is to use multiple weaker sources. In this paper we take a step in this direction by developing a method for learning the structure of a Bayesian network from multiple experts. Data is then used to refine the structure and estimate parameters. A simple analysis shows that even relatively few noisy experts can produce high-quality knowledge when combined. Experiments with real and simulated experts in a variety of domains show the benefits of this approach.
Matthew Richardson, Pedro Domingos
Added 17 Nov 2009
Updated 17 Nov 2009
Type Conference
Year 2003
Where ICML
Authors Matthew Richardson, Pedro Domingos
Comments (0)