A game-theoretic approach for learning optimal parameter values for probabilistic rough set regions is presented. The parameters can be used to define approximation regions in a probabilistic decision space. New values for loss functions are learned from a sequence of risk modifications derived from game-theoretic analysis of the relationship between two classification measures. Using game theory to maximize these measures results in a learning method to reformulate the loss functions. The decision-theoretic rough set model acquires initial values for these parameters through a combination of loss functions provided by the user. The new game-theoretic learning method modifies these loss functions according to an acceptable threshold.
Joseph P. Herbert, Jingtao Yao