Sciweavers

JMLR
2002

Learning Probabilistic Models of Link Structure

13 years 11 months ago
Learning Probabilistic Models of Link Structure
Most real-world data is heterogeneous and richly interconnected. Examples include the Web, hypertext, bibliometric data and social networks. In contrast, most statistical learning methods work with "flat" data representations, forcing us to convert our data into a form that loses much of the link structure. The recently introduced framework of probabilistic relational models (PRMs) embraces the object-relational nature of structured data by capturing probabilistic interactions between attributes of related entities. In this paper, we extend this framework by modeling interactions between the attributes and the link structure itself. An advantage of our approach is a unified generative model for both content and relational structure. We propose two mechanisms for representing a probabilistic distribution over link structures: reference uncertainty and existence uncertainty. We describe the appropriate conditions for using each model and present learning algorithms for each. W...
Lise Getoor, Nir Friedman, Daphne Koller, Benjamin
Added 22 Dec 2010
Updated 22 Dec 2010
Type Journal
Year 2002
Where JMLR
Authors Lise Getoor, Nir Friedman, Daphne Koller, Benjamin Taskar
Comments (0)