Sciweavers

COLT
2006
Springer

Learning Rational Stochastic Languages

14 years 4 months ago
Learning Rational Stochastic Languages
Given a finite set of words w1, . . . , wn independently drawn according to a fixed unknown distribution law P called a stochastic language, an usual goal in Grammatical Inference is to infer an estimate of P in some class of probabilistic models, such as Probabilistic Automata (PA). Here, we study the class Srat R () of rational stochastic languages, which consists in stochastic languages that can be generated by Multiplicity Automata (MA) and which strictly includes the class of stochastic languages generated by PA. Rational stochastic languages have minimal normal representation which may be very concise, and whose parameters can be efficiently estimated from stochastic samples. We design an efficient inference algorithm DEES which aims at building a minimal normal representation of the target. Despite the fact that no recursively enumerable class of MA computes exactly Srat Q (), we show that DEES strongly identifies Srat Q () in the limit. We study the intermediary MA output by DE...
François Denis, Yann Esposito, Amaury Habra
Added 20 Aug 2010
Updated 20 Aug 2010
Type Conference
Year 2006
Where COLT
Authors François Denis, Yann Esposito, Amaury Habrard
Comments (0)