We introduce a method for learning query transformations that improves the ability to retrieve answers to questions from an information retrieval system. During the training stage the method involves automatically learning phrase features for classifying questionsinto different types, automatically generating candidate query transformations from a training set of question/answer pairs, and automatically evaluating the candidate transforms on target information retrieval systems such as real-world general purpose search engines. At run time, questions are transformed into a set of queries, and re-ranking is performed on the documents retrieved. We present a prototype search engine, Tritus, that applies the method to web search engines. Blind evaluation on a set of real queries from a web search engine log shows that the method significantly outperforms the underlying web search engines as well as a commercial search engine specializing in question answering. Keywords Web search, query ...