Genome-wide association studies (GWAS) aim at discovering the association between genetic variations, particularly single-nucleotide polymorphism (SNP), and common diseases, which have been well recognized to be one of the most important and active areas in biomedical research. Also renowned is the privacy implication of such studies, which has been brought into the limelight by the recent attack proposed by Homer et al. Homer’s attack demonstrates that it is possible to identify a participant of a GWAS from analyzing the allele frequencies of a large number of SNPs. Such a threat, unfortunately, was found in our research to be significantly understated. In this paper, we demonstrate that individuals can actually be identified from even a relatively small set of statistics, as those routinely published in GWAS papers. We present two attacks. The first one extends Homer’s attack with a much more powerful test statistic, based on the correlations among different SNPs described by...