Relation triples produced by open domain information extraction (open IE) systems are useful for question answering, inference, and other IE tasks. Traditionally these are extracted using a large set of patterns; however, this approach is brittle on out-of-domain text and long-range dependencies, and gives no insight into the substructure of the arguments. We replace this large pattern set with a few patterns for canonically structured sentences, and shift the focus to a classifier which learns to extract self-contained clauses from longer sentences. We then run natural logic inference over these short clauses to determine the maximally specific arguments for each candidate triple. We show that our approach outperforms a state-of-the-art open IE system on the end-to-end TAC-KBP 2013 Slot Filling task.