Accessing the advanced functions of a mobile phone is not a trivial task for users with visual impairments. They rely on screen readers and voice commands to discover and execute functions. In mobile situations, however, screen readers are not ideal because users may depend on their hearing for safety, and voice commands are difficult for a system to recognize in noisy environments. In this paper, we extend Virtual Shelves--an interaction technique that leverages proprioception to access application shortcuts--for visually impaired users. We measured the directional accuracy of visually impaired participants and found that they were less accurate than people with vision. We then built a functional prototype that uses an accelerometer and a gyroscope to sense its position and orientation. Finally, we evaluated the interaction and prototype by allowing participants to customize the placement of seven shortcuts within 15 regions. Participants were able to access shortcuts in their person...
Frank Chun Yat Li, David Dearman, Khai N. Truong