Markov logic networks (MLNs) are a well-known statistical relational learning formalism that combines Markov networks with first-order logic. MLNs attach weights to formulas in first-order logic. Learning MLNs from data is a challenging task as it requires searching through the huge space of possible theories. Additionally, evaluating a theory’s likelihood requires learning the weight of all formulas in the theory. This in turn requires performing probabilistic inference, which, in general, is intractable in MLNs. Lifted inference speeds up probabilistic inference by exploiting symmetries in a model. We explore how to use lifted inference when learning MLNs. Specifically, we investigate generative learning where the goal is to maximize the likelihood of the model given the data. First, we provide a generic algorithm for learning maximum likelihood weights that works with any exact lifted inference approach. In contrast, most existing approaches optimize approximate measures such a...