Abstract This paper presents a general technique for obtaining new results pertaining to the non-finite axiomatizability of behavioral semantics over process algebras from old ones. The proposed technique is based on a variation on the classic idea of reduction mappings. In this setting, such reductions are translations between languages that preserve sound (in)equations and (in)equational proofs over the source language, and reflect families of (in)equations responsible for the non-finite axiomatizability of the target language. The proposed technique is applied to obtain a number of new non-finite axiomatizability theorems in process algebra via reduction to Moller's celebrated non-finite axiomatizability result for CCS. The limitations of the reduction technique are also studied.