— This paper describes a Markov random field (MRF) model with weighting parameters optimized by conditional random field (CRF) for on-line recognition of handwritten Japanese characters. It also presents updated evaluation using a large testing set. The model extracts feature points along the pen-tip trace from pen-down to pen-up and sets each feature point from an input pattern as a site and each state from a character class as a label. It employs the coordinates of feature points as unary features and the differences in coordinates between the neighboring feature points as binary features. The weighting parameters are estimated by CRF or the minimum classification error (MCE) method. In experiments using the TUAT Kuchibue database, the method achieved a character recognition rate of 92.77%, which is higher than the previous model’s rate, and the method of estimating the weighting parameters using CRF was more accurate than using MCE. Keywords-On-line recognition; Markov random fi...