This paper presents a genetic algorithm (GA) with specialized encoding, initialization and local search genetic operators to optimize communication network topologies. This NPhard problem is often highly constrained so that random initialization and standard genetic operators usually generate infeasible network architectures. Compounding this infeasibility issue is that the fitness function involves calculating the all-terminal reliability of the network, a calculation which is computationally expensive. Therefore, it is imperative that the search balances the need to thoroughly explore the boundary between feasible and infeasible networks, along with calculating fitness on only the most promising candidate networks. The algorithm results are compared to optimum results found by branch and bound and also to GA results without local search operators on a suite of 79 test problems. This GA strategy of employing bounds, simple heuristic checks and problem specific repair and local search...
Berna Dengiz, Fulya Altiparmak, Alice E. Smith