Automatic unloading of piled boxes of unknown dimensions is undoubtedly of great importance to the industry. In this contribution a system addressing this problem is described: a laser range finder mounted on the hand of an industrial robot is used for data acquisition. A vacuum gripper, mounted as well on the robot hand is employed from grasping the objects from their exposed surfaces. We localize the exposed surfaces of the objects via a hypothesis generation and verification framework. Accurate hypotheses about the pose and the dimensions of the boundary of the exposed surfaces are generated from edge information obtained from the input range image, using a variation of the Hough transform. Hypothesis verification is robustly performed using the range points inside the hypothesized boundary. Our system shows a variety of advantages such like computational efficiency accuracy and robustness, the combination of which cannot be found in existing approaches.