Label ranking is the task of inferring a total order over a predefined set of labels for each given instance. We present a general framework for batch learning of label ranking functions from supervised data. We assume that each instance in the training data is associated with a list of preferences over the label-set, however we do not assume that this list is either complete or consistent. This enables us to accommodate a variety of ranking problems. In contrast to the general form of the supervision, our goal is to learn a ranking function that induces a total order over the entire set of labels. Special cases of our setting are multilabel categorization and hierarchical classification. We present a general boosting-based learning algorithm for the label ranking problem and prove a lower bound on the progress of each boosting iteration. The applicability of our approach is demonstrated with a set of experiments on a large-scale text corpus.
Ofer Dekel, Christopher D. Manning, Yoram Singer