Weakly relational numeric domains express restricted classes of linear inequalities that strike a balance between what can be described and what can be efficiently computed. Popular weakly relational domains such as bounded differences and octagons have found application in model checking and abstract interpretation. This paper introduces logahedra, which are more expressiveness than octagons, but less expressive than arbitrary systems of two variable per inequality constraints. Logahedra allow coefficients of inequalities to be powers of two whilst retaining many of the desirable algorithmic properties of octagons.
Jacob M. Howe, Andy King