The logical and algorithmic properties of stable conditional independence (CI) as an alternative structural representation of conditional independence information are investigated. We utilize recent results concerning a complete axiomatization of stable conditional independence relative to discrete probability measures to derive perfect model properties of stable conditional independence structures. We show that stable CI can be interpreted as a generalization of Markov networks and establish a connection between sets of stable CI statements and propositional formulas in conjunctive normal form. Consequently, we derive that the implication problem for stable CI is coNP-complete. Finally, we show that Boolean satisfiability (SAT) solvers can be employed to efficiently decide the implication problem and to compute concise, non-redundant representations of stable CI, even for instances involving hundreds of random variables. Key words: conditional independence, graphical models, stable ...