Sciweavers

TC
2008

Low-Complexity Bit-Parallel Square Root Computation over GF(2^{m}) for All Trinomials

13 years 11 months ago
Low-Complexity Bit-Parallel Square Root Computation over GF(2^{m}) for All Trinomials
In this contribution we introduce a low-complexity bit-parallel algorithm for computing square roots over binary extension fields. Our proposed method can be applied for any type of irreducible polynomials. We derive explicit formulae for the space and time complexities associated to the square root operator when working with binary extension fields generated using irreducible trinomials. We show that for those finite fields, it is possible to compute the square root of an arbitrary field element with equal or better hardware efficiency than the one associated to the field squaring operation. Furthermore, a practical application of the square root operator in the domain of field exponentiation computation is presented. It is shown that by using as building blocks squarers, multipliers and square root blocks, a parallel version of the classical square-and-multiply exponentiation algorithm can be obtained. A hardware implementation of that parallel version may provide a speedup of up to...
Francisco Rodríguez-Henríquez, Guill
Added 15 Dec 2010
Updated 15 Dec 2010
Type Journal
Year 2008
Where TC
Authors Francisco Rodríguez-Henríquez, Guillermo Morales-Luna, Julio López
Comments (0)