Group Technology (GT) is a useful way of increasing the productivity for manufacturing high quality products and improving the flexibility of manufacturing systems. Cell formation (CF) is a key step in GT. It is used in designing good cellular manufacturing systems using the similarities between parts in relation to the machines in their manufacture. It can identify part families and machine groups. Recently, neural networks (NNs) have been widely applied in GT due to their robust and adaptive nature. NNs are very suitable in CF with a wide variety of real applications. Although Dagli and Huggahalli adopted the ART1 network with an application in machine-part CF, there are still several drawbacks to this approach. To address these concerns, we propose a modified ART1 neural learning algorithm. In our modified ART1, the vigilance parameter can be simply estimated by the data so that it is more efficient and reliable than Dagli and Huggahalli's method for selecting a vigilance valu...